The ROLE of PUBLIC HEALTH in TRAFFIC SAFETY

Presented by staff from the Texas Department of State Health Services, Injury and EMS/Trauma Registry Group

Linda M. Jones, MSPH
Manager

“What is public health and how does it relate to traffic safety?”

Ryan Beal, MPH
Epidemiologist

“The Dish on Data”

Crystal Beasley, MS
Research Specialist

“From Data to Action”
OBJECTIVES

• To acknowledge the role of public health as it relates to traffic safety
• To gain an understanding of the data available
• To describe the epidemiology of motor vehicle related injuries in TX
• To understand how data is used to inform public policy
PUBLIC HEALTH is:

- Everyone
- Every day
- Every where
What is public health?

- Public health is the science and art of protecting and improving the health of communities through education, promotion of healthy lifestyles, and research for disease and injury prevention.
The Leading Causes of Death in the US

<table>
<thead>
<tr>
<th>Year</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>Pneumonia and flu, Tuberculosis, Diarrhea, enteritis, Heart disease, Stroke, Nephritis, Injuries, Cancer</td>
</tr>
<tr>
<td>2000</td>
<td>Heart disease, Cancer, Stroke, Chronic respiratory, Unintentional injuries, Diabetes, Pneumonia and flu, Alzheimer’s disease</td>
</tr>
</tbody>
</table>
The Changing Direction of Public Health in the US: 1950 - present

- Pre-1950: Improving Sanitation
- 1950s: Eradicating Infectious Diseases
- 1970s: Removing Toxic Environments
- 1980s: Preventing Risky Lifestyles
- Current focus: Creating Safe & Healthy Environments
Top Public Health Achievements of the Twentieth Century

- Control of infectious diseases
- Family planning
- Safer work places
- Tobacco control
- Motor vehicle safety
Public Health Approach to Injury Prevention and Control

1. Data Collection and Analysis
2. Program Implementation
3. Coordination and Collaboration
4. Technical Support and Training
5. Public Policy
1. Data Collection and Analysis

- Surveillance
- Epidemiology
Specific injuries & risk factors that should be under surveillance*

1. Motor vehicle injuries
2. Alcohol involvement in motor vehicle deaths
3. Self-reported seat belt use and child safety seat use
4. Homicide
5. Suicide
6. Suicide attempts
7. Firearm injuries
8. Traumatic brain injuries
9. Fire and burn injuries
10. Self-reported smoke alarm use
11. Submersion injuries
12. Poisoning
13. Traumatic spinal cord injury
14. Injuries from falls

*As recommended by STIPDA
Epidemiology

The study of the causes, distribution, and control of disease and injury in populations.
Epidemiology enables us to determine:

- The leading causes of injury death
- Population groups and behaviors associated with greatest risk
- Programs and prevention priorities
- Progress achieved over time
- Problems that need further study
Where public health and traffic safety met

William Haddon
1926 - 1985

Physician and Epidemiologist

First Federal Highway Safety Director

Developed the Haddon Matrix
Examples of Haddon Strategies:

• Reduce hazard
• Separate hazard from whatever needs protection
• Modify qualities of the hazard
• Move rapidly to detect or remove hazard
Thanks to Haddon

Landmark change

From “accidents” to “crashes”
2. Program Design, Implementation and Evaluation

- Design, implement and evaluate interventions
- Media campaigns, and outreach efforts
- Evaluate cost-effectiveness
- Program replication
3. Coordination and Collaboration

- Build coalitions and develop partnerships
- Meet with partners to identify and discuss priorities
Fields related to injury

- Public health/epidemiology
- EMS/medicine
- Transportation
- Engineering/biomechanics
- Substance abuse
- Criminal justice
- Child development
- Mental health/psychology
Politics of Injury Prevention

- Motorcycle helmets
- Toyota recall
4. Technical Support and Training

- Train individuals and groups
- Promote and encourage the use of evidence-based interventions
5. Public Policy

- Collaborate with community leaders
- Local ordinances
- Legislation
The Dish on Data

An Introduction to Data Sets Used for Transportation Research
Objectives

• Introduce data sources
• Show how/where to access data
• Show examples
Data Sources

- Transportation specific
 - Fatality Analysis Reporting System (FARS)
 - General Estimates System (GES)
 - National Occupant Protection Use Survey (NOPUS)
 - Crash Record Information System (CRIS)

- Not Transportation specific
 - Hospital Discharge Data
 - EMS/Trauma Registry
 - Youth Risk Behavior Surveillance System (YRBSS)
Injury Distribution by Outcome

- Property Damage Only: 71.3% (4,146,000)
- Injuries: 28.1% (1,630,000)
- Deaths: 0.6% (34,017)

http://www-nrd.nhtsa.dot.gov/Pubs/811170.PDF
Fatality Analysis Reporting System (FARS)

Must involve a motor vehicle traveling on a traffic-way customarily open to the public, and must result in the death of an occupant of a vehicle or a non-occupant within 30 days of the crash.
Fatality Rates: Texas, U.S. and Best State (2008)

<table>
<thead>
<tr>
<th></th>
<th>Fatalities</th>
<th>Total VMT (millions)</th>
<th>Fatalities per 100 million VMT</th>
<th>Total Population</th>
<th>Fatalities Per 100,000 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td>3,382</td>
<td>235,382</td>
<td>1.44</td>
<td>24,326,974</td>
<td>13.9</td>
</tr>
<tr>
<td>US</td>
<td>37,261</td>
<td>2,973,509</td>
<td>1.25</td>
<td>304,059,724</td>
<td>12.25</td>
</tr>
<tr>
<td>Best State</td>
<td>0.67</td>
<td></td>
<td></td>
<td>5.59</td>
<td></td>
</tr>
</tbody>
</table>

General Estimates System (GES)

The crash must involve at least one motor vehicle traveling on a traffic-way and must result in property damage, injury, or death

http://www-nrd.nhtsa.dot.gov/Pubs/811170.PDF
2008 NASS GES File
Injury Rate by Year

Injury Rate per 100 Million Vehicle Miles Traveled

- 1988
- 1992
- 1996
- 2000
- 2004
- 2008

http://www-nrd.nhtsa.dot.gov/Pubs/81170.PDF
Proportion of Vehicles Involved in Traffic Crashes

- Passenger Car: 55.1%
- Light Truck: 39.2%
- Large Truck: 3.8%
- Bus: 0.6%
- Other: 0.2%
- Motorcycle: 1.1%

Source: http://www-nrd.nhtsa.dot.gov/Pubs/811170.PDF
National Occupant Protection Use Survey (NOPUS)

Provides yearly observed data on seat belt and motorcycle helmet use in the United States

http://www-nrd.nhtsa.dot.gov/Pubs/811036.PDF
Seat Belt Use vs. Fatality Rate

http://www-nrd.nhtsa.dot.gov/Pubs/811036.PDF
Motorcycle Helmet Use by State Law

![Bar chart showing percentage of motorcycle use by states requiring all to use helmets and other states.]

- States Requiring All to Use Helmets: 78% (2008) vs. 86% (2009)
- Other States: 50% (2008) vs. 55% (2009)

http://www-nrd.nhtsa.dot.gov/Pubs/811254.PDF
Crash Records Information System (CRIS)

Crash occurring on a public road resulting in injury to or death of any person or results in property damage to the apparent extent of $1,000 or more
Motor Vehicle Traffic Crash Data

We maintain an automated database of all reported motor vehicle traffic crashes in Texas since 2003.

Federal highway safety laws require the state to create this crash database for use in obtaining federal safety improvement funds. Section 409 of Title 23 of the United States Code, forbids the discovery and admission into evidence of reports, data, or other information compiled or collected for activities required pursuant to Federal highway safety programs, or for the purpose of developing any highway safety construction improvement project, which may be implemented utilizing federal-aid highway funds, in tort litigation arising from occurrences at the locations addressed in such documents or data. Information that is not available to a party in civil litigation, may be confidential under state law, pursuant to Tex. Govt. Code Sec. 552.111.

As per Sec 550.065 of the Texas Transportation Code, not all reported motor vehicle crash information is releasable.

Crash Data Request

You may download a Texas Motor Vehicle Crash Statistics annual report.

For location-specific data or information not published, please complete and submit the online request form below.

Note: In order to ensure efficient service, please provide all required information. If we need additional data to complete your request, we will contact you.

*Required information

Requester Information:

*First Name:
*Last Name:
Company/Agency:
*Address:
*City:
Rate of Crashes by Highway System

<table>
<thead>
<tr>
<th>Highway System</th>
<th>Rural</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>46.8</td>
<td>105.2</td>
</tr>
<tr>
<td>US Highway</td>
<td>59.6</td>
<td>147.5</td>
</tr>
<tr>
<td>State Highway</td>
<td>86.0</td>
<td>199.7</td>
</tr>
<tr>
<td>Farm-to-Market</td>
<td>123.7</td>
<td>243.5</td>
</tr>
</tbody>
</table>

Proportion of Vehicles Involved in Traffic Crashes

- Passenger Car: 55.1%
- Light Truck: 39.2%
- Large Truck: 3.8%
- Bus: 0.6%
- Other: 0.2%
- Motorcycle: 1.1%

http://www-nrd.nhtsa.dot.gov/Pubs/811170.PDF
Proportion of Vehicles Involved in Traffic Crashes

Light Truck, 45.2%

Passenger Car, 46.8%

Large Truck, 4.6%

Motorcycle, 1.3%

Other, 1.7%

Bus, 0.4%

Comparison of GES to CRIS

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>GES</th>
<th>CRIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car</td>
<td>55.1</td>
<td>46.8</td>
</tr>
<tr>
<td>Light Truck</td>
<td>39.2</td>
<td>45.2</td>
</tr>
<tr>
<td>Large Truck</td>
<td>3.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Bus</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Other</td>
<td>0.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Hospital Discharge Data

All hospital discharges from all state licensed hospitals except those that are statutorily exempt from the reporting requirement.
Texas Public Use Data File (PUDF)
Length of Stay by the Top 5 causes of TBI Hospitalization, 2004-2007

<table>
<thead>
<tr>
<th>Cause of Injury</th>
<th>Cases</th>
<th>Avg.</th>
<th>Std Dev</th>
<th>Max</th>
<th>Total Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls</td>
<td>23,085</td>
<td>5.8</td>
<td>7.6</td>
<td>315</td>
<td>135,019</td>
</tr>
<tr>
<td>Motor vehicle traffic</td>
<td>19,971</td>
<td>8.7</td>
<td>13.6</td>
<td>362</td>
<td>174,502</td>
</tr>
<tr>
<td>*Struck by/against</td>
<td>4,777</td>
<td>4.8</td>
<td>8.8</td>
<td>183</td>
<td>22,846</td>
</tr>
<tr>
<td>**Other transportation</td>
<td>2,299</td>
<td>5.5</td>
<td>8.5</td>
<td>170</td>
<td>12,732</td>
</tr>
<tr>
<td>Firearm</td>
<td>1,020</td>
<td>9.2</td>
<td>15.2</td>
<td>117</td>
<td>9,388</td>
</tr>
<tr>
<td>All causes of TBI</td>
<td>74,120</td>
<td>8.2</td>
<td>19.3</td>
<td>3,636</td>
<td>607,628</td>
</tr>
</tbody>
</table>

* Struck by/against includes: unarmed fight or brawl or using blunt object, legal intervention, struck and injured unintentionally by falling or stationary objects or persons, including TBI originating from sports.

**Other transportation includes most instances of railway, bicycle, animal-drawn, watercraft, air/space, and non-traffic related injuries.
Hospital Charges by the Top 5 Causes of TBI Hospitalization, 2004-2007

<table>
<thead>
<tr>
<th>Cause of TBI</th>
<th>Cases</th>
<th>% of cases</th>
<th>Avg</th>
<th>Std Dev</th>
<th>Total Charges (millions)</th>
<th>Percent of Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls</td>
<td>23,085</td>
<td>45.1%</td>
<td>$35,737</td>
<td>$51,991</td>
<td>$825</td>
<td>32.6%</td>
</tr>
<tr>
<td>Motor vehicle traffic</td>
<td>19,971</td>
<td>39.0%</td>
<td>$68,601</td>
<td>$95,734</td>
<td>$1,370</td>
<td>54.2%</td>
</tr>
<tr>
<td>*Struck by/against</td>
<td>4,778</td>
<td>9.3%</td>
<td>$32,833</td>
<td>$57,337</td>
<td>$156.9</td>
<td>6.2%</td>
</tr>
<tr>
<td>**Other transportation</td>
<td>2,299</td>
<td>4.5%</td>
<td>$44,779</td>
<td>$69,181</td>
<td>$102.9</td>
<td>4.1%</td>
</tr>
<tr>
<td>Firearm</td>
<td>1,020</td>
<td>2.0%</td>
<td>$71,813</td>
<td>$102,963</td>
<td>$73.3</td>
<td>2.9%</td>
</tr>
<tr>
<td>Top 5 causes</td>
<td>51,153</td>
<td>100.0%</td>
<td>$49,422</td>
<td>$76,131</td>
<td>$2,528</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

* struck by/against includes: unarmed fight or brawl or using blunt object, legal intervention, struck and injured unintentionally by falling or stationary objects or persons, including TBI originating from sports.

**Other transportation includes most instances of railway, bicycle, animal-drawn, watercraft, air/space, and non-traffic related injuries.
EMS/Trauma Registry

- 2 data sets: EMS and hospital

- EMS:
 - EMS runs

- Hospital:
 - Major trauma hospitalizations
Data and Statistics

Environmental Epi and Injury Surveillance Group

Important News and Updates

Registry Solutions Work Group (RSWG)
To view a list of RSWG Members click here
To view the January 27, 2010 meeting notes (62KB, MS Word) - click here
To view the February 3, 2010 meeting notes (42KB, MS Word) - click here
To view the February 17, 2010 meeting notes (37KB, MS Word) - click here
To view the March 18, 2010 meeting notes (38KB, MS Word) - click here

MTG Trauma Registry Improvement System Assessment - Final Report
Executive Summary only (243KB, PDF) - click here
Final Report-full document (2MB, PDF) - click here
Final Report-minus appendices (1MB, PDF) - click here
Appendices only (1MB, PDF) - click here

The deadline for submitting your 2009 data is March 31, 2010. No extensions will be granted. You may begin submitting your 2010 data.

Customer Feedback Form: Please take a moment to fill out our customer feedback form and send us your comments - click here.

EMS/Trauma Registry

Learn how to submit EMS and trauma data to the registry

Data and Statistics

Read reports, graphs, tables, and articles based on data
Drivers Tested for Blood Alcohol Level by Year

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested</td>
<td>5,691</td>
<td>5,873</td>
<td>6,154</td>
<td>6,525</td>
<td>6,855</td>
<td>31,098</td>
</tr>
<tr>
<td>Not Tested</td>
<td>6,562</td>
<td>6,626</td>
<td>6,176</td>
<td>6,360</td>
<td>5,844</td>
<td>31,568</td>
</tr>
<tr>
<td>Unknown</td>
<td>1,521</td>
<td>1,708</td>
<td>1,492</td>
<td>1,863</td>
<td>2,046</td>
<td>8,630</td>
</tr>
<tr>
<td>Total</td>
<td>13,774</td>
<td>14,207</td>
<td>13,822</td>
<td>14,748</td>
<td>14,745</td>
<td>71,296</td>
</tr>
<tr>
<td>Percent Tested</td>
<td>41.3%</td>
<td>41.3%</td>
<td>44.5%</td>
<td>44.2%</td>
<td>46.5%</td>
<td>43.6%</td>
</tr>
</tbody>
</table>

EMS/ Trauma Registry, 2003-2007
Blood Alcohol Level Among Drivers Tested by Year

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,757</td>
<td>3,091</td>
<td>2,970</td>
<td>3,248</td>
<td>3,528</td>
<td>15,594</td>
</tr>
<tr>
<td>1- 79</td>
<td>686</td>
<td>575</td>
<td>612</td>
<td>619</td>
<td>630</td>
<td>3,122</td>
</tr>
<tr>
<td>>= 80</td>
<td>1,831</td>
<td>1,880</td>
<td>1,844</td>
<td>1,931</td>
<td>2,084</td>
<td>9,570</td>
</tr>
<tr>
<td>Unknown</td>
<td>322</td>
<td>289</td>
<td>270</td>
<td>310</td>
<td>272</td>
<td>1,463</td>
</tr>
<tr>
<td>Missing/Invalid</td>
<td>95</td>
<td>38</td>
<td>458</td>
<td>417</td>
<td>341</td>
<td>1,349</td>
</tr>
<tr>
<td>Total</td>
<td>5,691</td>
<td>5,873</td>
<td>6,154</td>
<td>6,525</td>
<td>6,855</td>
<td>31,098</td>
</tr>
<tr>
<td>Percent >0</td>
<td>44.2%</td>
<td>41.8%</td>
<td>39.9%</td>
<td>39.1%</td>
<td>39.6%</td>
<td>40.8%</td>
</tr>
<tr>
<td>Percent >= 80</td>
<td>32.2%</td>
<td>32.0%</td>
<td>30.0%</td>
<td>29.6%</td>
<td>30.4%</td>
<td>30.8%</td>
</tr>
</tbody>
</table>

EMS/ Trauma Registry, 2003-2007

RUNS

- Sunday
- avg. M-TH
- Friday
- Saturday

Time of Day (24 hr.)

EMS/ Trauma Registry, 2004-2007
Youth Risk Behavior Surveillance System (YRBSS)

Classroom based paper survey conducted biennially on odd years to monitor priority health-risk behaviors that contribute substantially to the leading causes of death, disability, and social problems among youth and young adults in the United States.
Interactive Data Results

Texas Youth Risk Behavior Surveillance System

The Texas Youth Risk Behavior Surveillance System (YRBSS), initiated in 1991, is a federally funded classroom based paper survey conducted biennially on add years to monitor priority health-risk behaviors that contribute substantially to the leading causes of death, disability, and social problems among youth and adults in the United States. As a primary source for comprehensive statewide data on preventive health practices and health risk behaviors, YRBSS is an important tool for decision-making throughout the Texas Department of State Health Services (DSHS), the Texas Education Agency (TEA), and the public health community. Public and private health authorities at the federal and state levels rely on YRBSS to identify public health problems, design policy and interventions, set goals, and measure progress toward those goals.

This surveillance can be used to monitor the Year 2010 Objectives for smoking, overweight, exercise, seat belt use, fruit/vegetable consumption, alcohol consumption, drug use, sexual activity and other risk factors so that intervention priorities can be established and the long-term impact of health promotion programs can be monitored. All 50 state education agencies, the District of Columbia, eight territorial education agencies, 31 local education agencies, and tribal governments are eligible to receive funding to conduct the Youth Risk Behavior Survey (YRBS), although not all agencies take advantage of this. The YRBSS is used nationwide under the direction of the Centers for Disease Control and Prevention (CDC) so that survey methods and much of the questionnaire are standardized. As a result, comparisons can be made to other states, cities and the nation as a whole.

Funding for the YRBSS is provided by the CDC Division of Adolescent and School Health (DASH) through a grant to TEA.

Last Updated July, 2008
Risk Factor: Percentage of students who rode one or more times during the past 30 days in a car or other vehicle driven by someone who had been drinking alcohol.

<table>
<thead>
<tr>
<th>Year</th>
<th>% of Students</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total - All Students</td>
</tr>
<tr>
<td>2001</td>
<td>39.7</td>
<td>36.6</td>
<td>43.0</td>
<td>7,043</td>
</tr>
<tr>
<td>2005</td>
<td>37.0</td>
<td>34.0</td>
<td>40.1</td>
<td>4,108</td>
</tr>
<tr>
<td>2007</td>
<td>35.6</td>
<td>32.6</td>
<td>38.7</td>
<td>3,165</td>
</tr>
</tbody>
</table>

Risk Factor: Among students who rode a bicycle during the past 12 months, the percentage who never or rarely wore a bicycle helmet.

<table>
<thead>
<tr>
<th>Year</th>
<th>% of Students</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total - All Students</td>
</tr>
<tr>
<td>2001</td>
<td>92.4</td>
<td>91.2</td>
<td>93.4</td>
<td>4,140</td>
</tr>
<tr>
<td>2005</td>
<td>89.6</td>
<td>85.0</td>
<td>92.9</td>
<td>2,513</td>
</tr>
<tr>
<td>2007</td>
<td>92.3</td>
<td>89.6</td>
<td>94.3</td>
<td>1,951</td>
</tr>
</tbody>
</table>
Crash Outcome Data Evaluation System (CODES)

Collaborative approach to obtain medical and financial outcome information related to motor vehicle crashes... includes all persons involved in police-reported crashes -- those who died or were injured as those who were not injured.
Summary

- Identified datasets that can be used in crash related research
- Learned where and/or how to access the information
- Saw some examples of the types of information that can be obtained
From Data to Action

Real Examples of How Data Has Informed Policy in Traffic Safety
Objectives

- To understand how data is used to inform public policy
- To provide examples of successful prevention policies
Policy Change

William Haddon-change is made with
• Human (the driver)
• Vehicle
• Road
AND/OR
• Pre-event
• Event
• Post event
The Haddon Matrix

Human
- Pre Event: Drinking and Driving, Graduated Driver’s License
- Event: Wearing, Seat Belts and Helmets
- Post Event: EMS Response Time, On-Star Notification

Vehicle (agent of injury)
- Pre Event: Third Brake Light, Day Time Head Lights
- Event: Energy Absorbing Steering Columns, Laminated Windshields
- Post Event: Protected Gas Tanks

Environment
- Pre Event: Street Lights, Speed Bumps
- Event: Deformable Lamp Posts, Crash Cushions
- Post Event: Removing the Crash From the Road

Human (agent of injury) references include:
- Wearing Seat Belts and Helmets
- Energy Absorbing Steering Columns
- Protected Gas Tanks

Environment (agent of injury) references include:
- Street Lights
- Deformable Lamp Posts
- Removing the Crash From the Road
Which Cell Do We Pick?
CODES

- NHTSA Project
 Allows data linkage so that risk factors may be identified.
Haddon Matrix

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle (agent of injury)</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-event</td>
<td>Alcohol</td>
<td>Third Brake Light</td>
<td>Street Lamps</td>
</tr>
<tr>
<td></td>
<td>Graduated Licenses</td>
<td>Day Time Head Lights</td>
<td>Speed Bumps</td>
</tr>
<tr>
<td>Event</td>
<td>Wearing Seat Belts, Helmets</td>
<td>Steering Columns</td>
<td>Deformable Lampposts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated Windshields</td>
<td>Crash Cushions</td>
</tr>
<tr>
<td>Postevent</td>
<td>EMS Response Time</td>
<td>Gas Tank Protection</td>
<td>Clear the Road</td>
</tr>
</tbody>
</table>
Drinking and Driving

It is a myth that a drunk person is less likely to be injured in a crash because they are relaxed.

Evans, 2004
Minimum Drinking Age
An Inverse Relationship

AS Drinking Age Decreases
Youth Crash Fatalities Increase
Japan, 2002

MONEY impacted behavior

Prediction Observation Linear regression

New traffic law

Nagata T et al. Inj Prev 2008;14:19-23

©2008 by BMJ Publishing Group Ltd

Nagata T et al. Inj Prev 2008;14:19-23

©2008 by BMJ Publishing Group Ltd
Haddon Matrix

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle (agent of injury)</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-event</td>
<td>Alcohol</td>
<td>Third Brake Light</td>
<td>Street Lamps</td>
</tr>
<tr>
<td></td>
<td>Graduated Licenses</td>
<td>Day Time Head Lights</td>
<td>Speed Bumps</td>
</tr>
<tr>
<td>Event</td>
<td>Wearing Seat Belts, Helmets</td>
<td>Steering Columns</td>
<td>Deformable Lampposts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated Windshields</td>
<td>Crash Cushions</td>
</tr>
<tr>
<td>Postevent</td>
<td>EMS Response Time</td>
<td>Gas Tank Protection</td>
<td>Clear the Road</td>
</tr>
</tbody>
</table>
Child Passenger Safety Seats

Photo Courtesy of Fisher Price
Haddon Matrix

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle (agent of injury)</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-event</td>
<td>Alcohol</td>
<td>Third Brake Light</td>
<td>Street Lamps</td>
</tr>
<tr>
<td></td>
<td>Graduated Licenses</td>
<td>Day Time Head Lights</td>
<td>Speed Bumps</td>
</tr>
<tr>
<td>Event</td>
<td>Wearing Seat Belts, Helmets</td>
<td>Steering Columns</td>
<td>Deformable Lampposts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated Windshields</td>
<td></td>
</tr>
<tr>
<td>Postevent</td>
<td>EMS Response Time</td>
<td>Gas Tank Protection</td>
<td>Clear the Road</td>
</tr>
</tbody>
</table>
Passive Improvements
Haddon Matrix

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle (agent of injury)</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-event</td>
<td>Alcohol</td>
<td>Third Brake Light</td>
<td>Street Lamps</td>
</tr>
<tr>
<td></td>
<td>Graduated Licenses</td>
<td>Day Time Head Lights</td>
<td>Speed Bumps</td>
</tr>
<tr>
<td>Event</td>
<td>Wearing Seat Belts, Helmets</td>
<td>Steering Columns</td>
<td>Deformable Lampposts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated Windshields</td>
<td>Crash Cushions</td>
</tr>
<tr>
<td>Postevent</td>
<td>EMS Response Time</td>
<td>Gas Tank Protection</td>
<td>Clear the Road</td>
</tr>
</tbody>
</table>
Calming the Road

IT'S THE VERY LATEST IN "TRAFFIC CALMING" MEASURES!

© Original Artist
Crash Cushions
Lessons Learned

- Research can help identify risk factors for injury and help inform sensible policy.
- Many important public health policies can benefit consumers without their awareness.
- The built environment can be constructed to reduce serious injury.
What box can you change?
QUESTIONS?

Linda M. Jones, MSPH
Manager
linda.jones@dshs.state.tx.us
512-776-3131

Ryan Beal, MPH
Epidemiologist
ryan.beal@dshs.state.tx.us
512-776-2808

Crystal Beasley, MS
Research Specialist
crystal.beasley@dshs.state.tx.us
512-776-3575